Publications in Scientific Journals:

M. Glaner, R. Weber:
"PPP with integer ambiguity resolution for GPS and Galileo using satellite products from different analysis centers";
GPS Solutions, 25 (2021), 102; 1 - 13.

English abstract:
Integer ambiguity resolution is the key for achieving the highest accuracy with Precise Point Positioning (PPP) and for significantly reducing the convergence time. Unfortunately, due to hardware phase biases originating from the satellites and receiver, fixing the phase ambiguities to their correct integer number is difficult in PPP. Nowadays, various institutions and analysis centers of the International GNSS Service (IGS) provide satellite products (orbits, clocks, biases) based on different strategies, which allow PPP with integer ambiguity resolution (PPP-AR) for GPS and Galileo. We present the theoretical background and practical application of the satellite products from CNES, CODE, SGG, and TUG. They are tested in combined GPS and Galileo PPP-AR solutions calculated using our in-house software raPPPid. The numerical results show that the choice of satellite product has an influence on the convergence time of the fixed solution. The satellite product of CODE performs better than the following, in the given order: SGGCODE, SGGGFZ, TUG, CNES, and SGGCNES. After the convergence period, a similar level of accuracy is achieved with all these products. With these satellite products and observations with an interval of 30 s, a mean convergence time of about 6 min to centimeter-level 2D positioning is achieved. Using high-rate observations and an observation interval of 1 s, this period can be reduced to a few minutes and, in the best case, just one minute.

GNSS, PPP, Ambiguity resolution, Convergence time, Ionosphere-free linear combination

"Official" electronic version of the publication (accessed through its Digital Object Identifier - DOI)

Electronic version of the publication:

Created from the Publication Database of the Vienna University of Technology.