Talks and Poster Presentations (with Proceedings-Entry):

W. Wagner, C. Reimer, B. Bauer-Marschallinger, M. Enenkel, S. Hahn, T. Melzer, V. Naeimi, C. Paulik, W. Dorigo:
"Long-term Soil Moisture Time Series Analyses based on Active Microwave Backscatter Measurements";
Talk: 36th International Symposium on Remote Sensing of Environment 2015 (ISRSE36), Berlin, Germany; 2015-05-11 - 2015-05-15; in: "36th International Symposium on Remote Sensing of Environment", G. Schreier, P. Skrovseth, H. Staudenrausch (ed.); ISPRS Archives, Volume XL-7/W3 (2015), ISSN: 2194-9034; 545 - 550.

English abstract:
Active microwave sensors operating at lower microwave frequencies in the range from 1 to 10 GHz provide backscatter measurements that are sensitive to the moisture content of the soil. Thanks to a series of European C-band (5.3 GHz) scatterometers, which were first flown on board of the European Remote Sensing satellites ERS-1 and ERS-2, and later on board of MetOp-A and MetOp -B, we are now in the possession of a long-term soil moisture time series starting in 1991. The creation of globally consistent long-term soil moisture time series is a challenging task. The TU-Wien soil moisture algorithm is adopted to tackle these challenges. In this paper we present two methodologies that were developed to ensure radiometric stability of the European C-band scatterometers. The objective of sensor intra-calibration is to monitor and correct for radiometric instabilities within one scatterometer mission, while sensor inter-calibration aims to remove radiometric differences across several missions. In addition, a novel vegetation modelling approach is presented that enables the estimation of vegetation parameters for each day across several years to account for yearly to longer-term changes in vegetation phenology and land cover.

Soil moisture, scatterometers, land surface dynamics

"Official" electronic version of the publication (accessed through its Digital Object Identifier - DOI)

Electronic version of the publication:

Created from the Publication Database of the Vienna University of Technology.