[Back]


Talks and Poster Presentations (without Proceedings-Entry):

B. Martens, W. Waegeman, W. Dorigo, N. Verhoest, D. Miralles:
"Investigating the Control of Ocean-Atmospheric Oscillations on Global Terrestrial Evaporation";
Talk: AGU Fall Meeting 2017, New Orleans, Louisiana, USA; 2017-12-11 - 2017-12-15.



English abstract:
Intra-annual and multi-decadal variability in Earth´s climate is strongly driven by periodic oscillations in the coupled state of our atmosphere and ocean. These oscillations do not only impact climate in nearby regions, but can also have an effect on the climate in remote areas, a phenomenon that is often referred to as teleconnection. Because changes in local climate immediately affect terrestrial ecosystems through a series of complex processes, ocean-atmospheric oscillations are expected to influence land evaporation; i.e. the return flux of water from land into the atmosphere. In this presentation, the effects of ocean-atmospheric oscillations on global terrestrial evaporation are analysed. We use multi-decadal, satellite-based observations of different climate variables (air temperature, radiation, precipitation) in combination with a simple supervised learning method - the Least Absolute Shrinkage and Selection Operator - to detect the impact of sixteen leading ocean-atmospheric oscillations on terrestrial evaporation. The latter is retrieved using the Global Land Evaporation Amsterdam Model (GLEAM).

The analysis reveals hotspot regions in which more than 30% of the inter-annual variability in terrestrial evaporation can be explained by ocean-atmospheric oscillations. The impact is different per region and season, and can typically be attributed to a small subset of oscillations. For instance, the dynamics in terrestrial evaporation over eastern Australia are substantially impacted by both the El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) during Austral spring. Using the same learning method, but targeting terrestrial evaporation based on its local climatic drivers (air temperature, precipitation, and radiation), shows the dominant control of precipitation on terrestrial evaporation in Australia, suggesting that both ENSO and IOD affect the precipitation, in his turn influencing evaporation. The latter is confirmed by regressing precipitation to the ocean-atmospheric oscillations. The results of our study allow for a better understanding of the link between ocean-atmosphere dynamics and terrestrial bio-geochemical cycles, and may help improve the prediction of future changes in the water cycle over the continents.

Created from the Publication Database of the Vienna University of Technology.